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Abstract
We consider systems of ordinary differential equations with a quadratic
homogeneous right-hand side. We give a new simple proof of an earlier
result, which gives the necessary conditions for the existence of polynomial first
integrals. The necessary conditions for the existence of a polynomial symmetry
field are given. It is proved that an arbitrary homogeneous first integral of a
given degree is a linear combination of a fixed set of polynomials.

PACS numbers: 0210, 0230H, 0260L

1. Introduction

In this paper we study the system of ordinary differential equations with a quadratic
homogeneous right-hand side:

ẋi = fi(x1, . . . , xn) fi =
n∑

j,k=1

aijkxjxk aijk ∈ C i = 1, . . . , n. (1.1)

Systems of such a form arise in many problems of classical mechanics: Euler–Poincaré
equations on Lie algebras, the Lotka–Volterra systems, etc.

The main concern of this paper is to find the values of the parameters aijk for which
equations (1.1) have first integrals.

In paper [2] the necessary conditions are found for the existence of polynomial first
integrals of the system

ẋi = Vi(x1, . . . , xn) i = 1, . . . , n (1.2)

where Vi ∈ C[x1, . . . , xn] are homogeneous polynomials of weighted degree s ∈ N. In the
case s = 2 we obtain equations (1.1).

The method given in [2] is based on ideas of Darboux [1,6,7] who used a special type of
particular solutions of the system (1.2)

xi(t) = diφ(t) i = 1, . . . , n
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where φ(t) satisfies the differential equation φ̇ = λφs , λ is an arbitrary number and
d = (d1, . . . , dn)

T �= 0 is a solution of the following algebraic system:

Vi(d) = λdi i = 1, . . . , n.

In this paper we generalize this method.
It was shown in [8, 10] that the weighted degree of a polynomial first integral of the

system (1.1) is a certain integer linear combination of Kovalevskaya exponents (see [9]). In
section 2 we give a new simple proof of this result. In section 3 a similar theorem for polynomial
symmetry fields is proven. As an example, we consider the well known Halphen equations.
Section 4 contains our main result. We present so-called base functions and prove that every
homogeneous polynomial first integral of a fixed degree is a certain linear combination of the
corresponding base functions. In section 5 we give an application of previous results to planar
homogeneous quadratic systems where necessary and sufficient conditions for the existence
of polynomial first integrals in terms of Kovalevskaya exponents are found.

2. The existence of the polynomial first integral. Necessary conditions

Following paper [2], we consider the solution C = (c1, . . . , cn)
T �= (0, . . . , 0)T of algebraic

equations

fi(c1, . . . , cn) + ci = 0 i = 1, . . . , n. (2.1)

We define the Kovalevskaya matrix K [3]

Kij = ∂fi

∂xj
(C) + δij i, j = 1, . . . , n.

where δij is the Kronecker symbol. Let us assume that K can be transformed to diagonal form

K = diag(ρ1, . . . , ρn).

The eigenvalues ρ1, . . . , ρn are called Kovalevskaya exponents.

Lemma 1 [3]. Vector C is an eigenvector of the matrix K with eigenvalue ρ1 = −1.

Consider the following linear differential operators:

D+ =
n∑

i=1

fi
∂

∂xi
D0 =

n∑
i,j=1

Kijxj
∂

∂xi

U =
n∑

i=1

xi
∂

∂xi
D− =

n∑
i=1

ci
∂

∂xi

(2.2)

which satisfy relations

[D−,D+] = D0 − U [D0,D−] = D− (2.3)

where [A,B] = AB − BA.

Theorem 2 [8, 10]. Suppose that the system (1.1) possesses a homogeneous polynomial first
integral FM of degree M, and ρ1 = −1, ρ2, . . . , ρn are Kovalevskaya exponents. Then there
exists a set of non-negative integers k2, . . . , kn such that

k2ρ2 + · · · + knρn = M k2 + · · · + kn � M. (2.4)
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Proof. By definition of a first integral D+FM = 0. Considering identities

Dl
−(D+FM) = 0 for l ∈ N (2.5)

we obtain the following set of polynomials:

FM,FM−1, . . . , Fρ+1, Fρ

defined by the recursive relations

D−Fi+1 = (M − i)Fi i = ρ, . . . ,M − 1

where the number 1 � ρ � M is determined by the condition D−Fρ = 0. Using (2.3) and
(2.5) we deduce the following chain of equations:

D0FM = MFM − D+FM−1

D0FM−1 = MFM−1 − D+FM−2

· · ·
D0Fρ+1 = MFρ+1 − D+Fρ

D0Fρ = MFρ.

(2.6)

Let J1, . . . , Jn be linearly independent eigenvectors of the Kovalevskaya matrix K

corresponding to the eigenvalues ρ1 = −1, ρ2, . . . , ρn. According to lemma 1 we can always
put J1 = C.

We now consider the linear change of variables

xi =
n∑

j=1

Lijyj i = 1, . . . , n (2.7)

where L = (Lij ) is a non-singular matrix defined by

L = (C, J2, . . . , Jn),

then obviously

L−1KL = diag(−1, ρ2, . . . , ρn).

With the help of (2.7) and lemma 1 one finds the following expressions for the operators
D0, D− in the new variables:

D0 =
n∑

i=1

ρiyi
∂

∂yi
D− = − ∂

∂y1

and equation (2.6) becomes(
ρ2y2

∂

∂y2
+ · · · + ρnyn

∂

∂yn

)
Fρ = MFρ. (2.8)

We can write the polynomial Fρ as follows:

Fρ =
∑
|k|=ρ

Ak2,...,kny
k2
2 , . . . , yknn |k| = k2 + · · · + kn ki ∈ Z+. (2.9)

Substituting (2.9) into (2.8), one obtains the following linear system:

(k2ρ2 + · · · + knρn)Ak2,...,kn = MAk2,...,kn for |k| = ρ. (2.10)

Taking into account that Fρ is not zero identically, we conclude that there exists at least one
non-zero set k2, . . . , kn, |k| � M such that

k2ρ2 + · · · + knρn = M. (2.11)
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This relation implies (2.4). �

Remark. Theorem 2 does not impose any restrictions on grad(FM) calculated at the point
C. Thus, it generalizes the theorem of Yoshida [3, p 572], who used essentially the condition
grad(FM) �= 0.

Corollary 1. The Halphen equations

ẋ1 = x3x2 − x1x3 − x1x2

ẋ2 = x1x3 − x2x1 − x2x3

ẋ3 = x2x1 − x3x2 − x3x1

(2.12)

admit no polynomial first integrals.

Indeed, the system (2.12) has Kovalevskaya exponents ρ1 = ρ2 = ρ3 = −1. It is easy to
verify that conditions (2.4) are not fulfilled for any positive integer M . Moreover, as proved
in [2], the system (2.12) has no rational first integrals.

3. Existence of polynomial symmetry fields. Necessary conditions

The first integrals are the simplest tensor invariants of the system (1.1). In [4] Kozlov considered
tensor invariants of weight-homogeneous differential equations which include the system (1.1).
In particular, he found necessary conditions for the existence of symmetry fields. Below we
propose a generalization of his result.

Recall that the linear operator W = ∑n
i=1 wi(x1, . . . , xn)

∂
∂xi

, is called the symmetry field
of (1.1), if [W,D+] = 0, where D+ is defined by (2.2). If w1, . . . , wn are homogeneous
functions of degree M + 1 then the degree of W is M [4].

Theorem 2. Suppose that the system (1.1) possesses a polynomial symmetry field of degree M
and ρ1 = −1, ρ2, . . . , ρn are Kovalevskaya exponents. Then there exist non-negative integers
k2, . . . , kn, |k| � M + 1 such that at least one of the following equalities holds:

k2ρ2 + · · · + knρn = M + ρi i = 1, . . . , n. (3.1)

Proof. Let WM be a polynomial symmetry field of degree M . Substituting in the proof of
theorem 2 operators D+, D0, D− with their commutators [D+, ], [D0, ], [D−, ] respectively we
repeat the same arguments. �

Corollary 3. The Halphen equations (2.12) admit no polynomial symmetry fields.

Using (3.1) we obtain that M may be equal to −1, 0, 1 only. It is easy to check that (2.12)
does not have symmetry fields of such degrees.

4. Base functions

After the change of variables (2.7) the system (1.1) takes the form

ẏ1 = −y2
1 + ϕ1(y2, . . . , yn)

ẏi = (ρi − 1)y1yi + ϕi(y2, . . . , yn) i = 2, . . . , n
(4.1)

where ϕi are quadratic homogeneous polynomials in the variables y2, . . . , yn.
According to (2.2) we now define operators D+,D0,D−.
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A homogeneous polynomial PM(y1, . . . , yn) of degree M satisfying the condition

D−(D+PM) = 0 (4.2)

is called the base function of the system (4.1). In other words, the function D+PM does not
depend on y1. It is clear that base functions of degree M form a linear space LM over field C.

Lemma 4. If the system (4.1) has a homogeneous polynomial first integral FM of degree M ,
then FM ∈ LM .

Indeed, by definition, we have D+FM = 0, hence, in view of (4.2), FM ∈ LM .
Let J (M) = {z ∈ Z

n−1
+ | z2ρ2 + · · · + znρn = M, |z| � M} be the set of integer-valued

vectors z = (z2, . . . , zn)
T for which the condition (2.11) is fulfilled. We put m = |J (M)| and

suppose J (M) �= ∅.

Theorem 5. The dimension d of LM satisfies the condition 1 � d � m.

Proof. Let us assume the set J (M) contains vectors z(1), . . . , z(m) which are ordered by the
norm |z| = z2 + · · · + zn

|z(1)| � · · · � |z(m)|.
We define the vector ρ = (ρ2, . . . , ρn)

T and put (ρ, z) = ρ2z2 + · · · + ρnzn, |z(i)| = ni ,
i = 1, . . . , m.

Following the proof of theorem 2, for each i = 1, . . . , m we consider the system of linear
partial differential equations

D0Pi,ni = MPi,ni

D0Pi,ni+1 = MPi,ni+1 − D+Pi,ni

· · ·
D0Pi,M−1 = MPi,M−1 − D+Pi,M−2

D0Pi,M = MPi,M − D+Pi,M−1

(4.3)

D−Pi,l+1 = (M − l)Pi,l l = ni, . . . ,M − 1 (4.4)

which defines polynomials Pi,ni , . . . , Pi,M recurrently.
It follows from (z(i), ρ) = M that the first equation in (4.3) has the particular solution

Pi,ni = y
z
(i)
2

2 , . . . , yz
(i)
n

n .

Equations (4.3), (4.4) define a certain base function Pi,M . Indeed, according to (4.4), we
have

Pi,M−1 = D−Pi,M. (4.5)

Substituting (4.5) into the last equation in (4.3), and using relations (2.3) we find

D0Pi,M = MPi,M − D+D−Pi,M = MPi,M − (D−D+ − D0 + U)Pi,M.

Hence D−(D+Pi,M) = 0.
Now consider the problem on the existence of a solution of (4.3), (4.4) in the form of

homogeneous polynomials Pi,ni , . . . , Pi,M . We fix certain i = 1, . . . , m and put ai = M −ni .
Using the relations (4.4) we can write

Pi,ni = Ii,ni

Pi,ni+p =
p∑

j=0

(
p − j

ai − j

)
y
p−j

1 Ii,ni+j p = 1, . . . , ai
(4.6)
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where Ii,k(y2, . . . , yn) are certain homogeneous polynomials of degrees k = ni, . . . ,M .
Notice that Ii,k does not depend on y1.

Differential operators D+, D0 can be represented in the form

D+ = (−y2
1 + ϕ1)

∂

∂y1
+ y1(A0 − Ũ ) + A+

D0 = −y1
∂

∂y1
+ A0

(4.7)

where

A+ =
n∑

k=2

ϕk
∂

∂yk
A0 =

n∑
k=2

ρkyk
∂

∂yk
Ũ =

n∑
k=2

yk
∂

∂yk
. (4.8)

Using (4.3), (4.6), (4.7) one deduces the following equations for determination of I :

A0Ii,ni = MIi,ni

A0Ii,ni+1 = MIi,ni+1 − A+Ii,ni

A0Ii,ni+2 = MIi,ni+2 − aiϕ1Ii,ni − A+Ii,ni+1

A0Ii,ni+3 = MIi,ni+3 − (ai − 1)ϕ1Ii,ni+1 − A+Ii,ni+2

· · ·
A0Ii,M = MIi,M − 2ϕ1Ii,M−2 − A+Ii,M−1.

(4.9)

We can write each equation of (4.9) as follows:

A0Xl = MXl + Yl (4.10)

where Xl, Yl are homogeneous polynomials of weighted degree l = ni, . . . ,M . Let us assume

Xl =
∑
|i|=l

ci2,...,iny
i2
2 , . . . , y

in
n Yl =

∑
|i|=l

di2,...,iny
i2
2 , . . . , y

in
n |i| = i2 + · · · + in (4.11)

where ci2,...,in , di2,...,in are constant parameters. Then substituting (4.11) into (4.10), we obtain
the following linear system with respect to ci2,...,in :

(i2ρ2 + · · · + inρn − M)ci2,...,in = di2,...,in (4.12)

for i2, . . . , in = 0, 1, . . . , |i| = l.
Suppose there exists a set k2, . . . , kn for which the following conditions are fulfilled:

(k2, . . . , kn)
T ∈ J (M) dk2,...,kn �= 0 |k| = l. (4.13)

Then the solution Ii,ni , . . . , Ii,M does not exist. In this case we put Pi,M = 0.
If the conditions (4.13) are not satisfied, we obtain the base function

Pi,M =
ai∑
j=0

y
aj−j

1 Ii,ni+j . (4.14)

It is easy to show that polynomials {Pi,M}i=1
i=m are linearly independent over the field C.

Taking into account that n1 � · · · � nm and using (4.13), we see that in the case i = m

we always can determine the base function Pi,M . Therefore, under the assumption J (M) �= ∅,
the space LM always contains a non-zero function. �

Corollary 6. If at least one resonance condition of the form

(z, ρ) = M |z| � M z ∈ Z
n−1
+

is fulfilled, then there exists a base function of degree M .
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5. Polynomial first integrals in the case of a quadratic plane vector field

The first classification of integral curves of two-dimensional quadratic homogeneous systems
can be found in the paper by Lyagina [5] and later was completed by numerous authors.

In this section we apply the previous results to this problem to illustrate the method of
basis functions.

Consider the system

ẋ1 = a1x
2
1 + b1x1x2 + d2x

2
2

ẋ2 = a2x
2
2 + b2x1x2 + d1x

2
1

(5.1)

where ai, bi, di are constant parameters.
Let c(1) = (c

(1)
1 , c

(1)
2 )T , c(2) = (c

(2)
1 , c

(2)
2 )T be any two linearly independent solutions of

the algebraic system (2.1). The exceptional cases when the system (2.1) has only one or admit
no solutions are excluded for the discussion below.

We assume that Kovalevskaya exponents corresponding to c(1), c(2) are

R1 = (−1, ρ1)
T R2 = (−1, ρ2)

T . (5.2)

Lemma 7. The system (5.1) has a homogeneous polynomial first integral of degree M if and
only if there exists an integer k = 1, . . . ,M − 1 such that ρ1 = M/k and ρ2 is one of the
following numbers:

M

M − k
,

M

M − k − 1
, . . . ,

M

2
,M.

Proof. Consider the following change of coordinates:(
x1

x2

)
=

(
c
(1)
1 c

(2)
1

c
(1)
2 c

(2)
2

) (
p1

p2

)
(5.3)

which exists because of linear independence of vectors c(1), c(2). In coordinates (p1, p2) the
system (5.1) takes a more simple form

ṗ1 = −p2
1 + (ρ2 − 1)p1p2

ṗ2 = −p2
2 + (ρ1 − 1)p1p2.

(5.4)

It is easy to show that under the change (5.3), the vectors c(1), c(2) turn into c̃(1) = (1, 0)T ,
c̃(2) = (0, 1)T respectively. Obviously, the system (5.4) has the same Kovalevskaya
exponents (5.2). The matrix K , calculated for c̃(1), is

K =
( −1 ρ2 − 1

0 ρ1

)
.

Under the assumption ρ1 �= −1, we can reduce K to a diagonal form using the following
change of coordinates:(

p1

p2

)
= L

(
y1

y2

)

with the constant matrix L

L =
(

1 ρ2 − 1
0 ρ1 − 1

)
.

The case ρ1 = −1 will be considered below.
Finally, equations (5.4) take the form (4.1)

ẏ1 = −y2
1 + ϕ1

ẏ2 = (ρ1 − 1)y1y2 + ϕ2
(5.5)
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where

ϕ1 = ay2
2 ϕ2 = by2

2

a = (ρ2 − 1)(ρ1 + ρ2) b = (ρ1 − 1)(ρ2 − 1) − ρ1 − 1.

For the operators (4.8) we get

A+ = ϕ2
∂

∂y2
A0 = ρ1y2

∂

∂y2
Ũ = y2

∂

∂y2
.

Let FM be a polynomial first integral of (5.5) of degree M .
According to theorem 2, there exists an integer k = 1, . . . ,M − 1 such that

kρ1 = M. (5.6)

We exclude the case k = M(ρ1 = 1), since ifρ1 = ±1, then the system (5.1) has no polynomial
first integrals. This can be shown directly using equations (5.4) and (5.5).

Next, we calculate the base function PM corresponding to the resonance condition (5.6).
Consider the equations (4.9). It is obvious that polynomials I1,k, . . . , I1,M can be represented
in the following form:

I1,k+i = αiy
k+i
2 i = 0, . . . ,M − k (5.7)

where α0, . . . , αM−k are constant parameters.
Substituting (5.7) into (4.9) we obtain

α0 = 1

α1 = bk

ρ1(k + 1) − M

αi = a(M − k − i + 2)αi−1 + b(k + i − 1)αi−2

ρ1(k + i) − M
i = 2, . . . ,M − k.

(5.8)

According to (4.14), we get the following expression for the base function PM :

PM =
M−k∑
j=0

αjy
M−k−j

1 y
k+j
2 . (5.9)

By definition of the base function it is clear that

D+PM = δyM+1
2 (5.10)

where

δ = aαM−1 + bMαM. (5.11)

Thus, the linear space LM contains only one polynomial PM . Hence, taking into account
lemma 6, FM = constPM .

Using (5.10), we conclude that PM is a first integral if and only if δ = 0. In view of (5.6),
(5.8), (5.11) and the above condition, we arrive at lemma 9. �

Theorem 8. The system (5.1) possesses a homogeneous polynomial first integral of degree M
if and only if the following conditions are fulfilled:

(a) ρi , i = 1, 2 are positive rational numbers;
(b) ρ−1

1 + ρ−1
2 � 1;

(c) M
ρi

∈ N.
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This is an obvious consequence of lemma 9.
As an example consider the following system:

ẋ1 = x2
1 − 9x2

2

ẋ2 = −3x2
1 − 8x1x2 + 3x2

2 .
(5.12)

The vectors c(1), c(2) have the form

c(1) = ( 1
8 ,− 1

8 )
T c(2) = ( 1

8 ,
1
8 )

T .

Calculating the corresponding Kovalevskaya exponents (5.2) one obtains

R1 = (−1, 3)T R2 = (−1, 3
2 )

T .

We have ρ1 = 3, ρ2 = 3
2 , ρ−1

1 + ρ−1
2 = 1. So, the conditions (a) and (b) of theorem 10

are fulfilled. By the condition (c) one gets M = 3l, l ∈ N. Thus, equations (5.12) possess a
cubic first integral F3. Using formulae (5.8) and (5.9), we obtain

F3 = x3
1 + x2

1x2 − x1x
2
2 − x3

2 .
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