On the existence of polynomial first integrals of quadratic homogeneous systems of ordinary differential equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 342185
(http://iopscience.iop.org/0305-4470/34/11/311)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.124
The article was downloaded on 02/06/2010 at 08:50

Please note that terms and conditions apply.

On the existence of polynomial first integrals of quadratic homogeneous systems of ordinary differential equations

Alexei Tsygvintsev
Section de Mathematiques, Université de Genève, 2-4, rue du Lievre, CH-1211, Case postale 240, Switzerland
E-mail: Alexei.Tsygvintsev@math.unige.ch

Received 19 May 2000, in final form 25 July 2000

Abstract

We consider systems of ordinary differential equations with a quadratic homogeneous right-hand side. We give a new simple proof of an earlier result, which gives the necessary conditions for the existence of polynomial first integrals. The necessary conditions for the existence of a polynomial symmetry field are given. It is proved that an arbitrary homogeneous first integral of a given degree is a linear combination of a fixed set of polynomials.

PACS numbers: $0210,0230 \mathrm{H}, 0260 \mathrm{~L}$

1. Introduction

In this paper we study the system of ordinary differential equations with a quadratic homogeneous right-hand side:
$\dot{x}_{i}=f_{i}\left(x_{1}, \ldots, x_{n}\right) \quad f_{i}=\sum_{j, k=1}^{n} a_{i j k} x_{j} x_{k} \quad a_{i j k} \in \mathbb{C} \quad i=1, \ldots, n$.
Systems of such a form arise in many problems of classical mechanics: Euler-Poincaré equations on Lie algebras, the Lotka-Volterra systems, etc.

The main concern of this paper is to find the values of the parameters $a_{i j k}$ for which equations (1.1) have first integrals.

In paper [2] the necessary conditions are found for the existence of polynomial first integrals of the system

$$
\begin{equation*}
\dot{x}_{i}=V_{i}\left(x_{1}, \ldots, x_{n}\right) \quad i=1, \ldots, n \tag{1.2}
\end{equation*}
$$

where $V_{i} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ are homogeneous polynomials of weighted degree $s \in \mathbb{N}$. In the case $s=2$ we obtain equations (1.1).

The method given in [2] is based on ideas of Darboux [1,6,7] who used a special type of particular solutions of the system (1.2)

$$
x_{i}(t)=d_{i} \phi(t) \quad i=1, \ldots, n
$$

where $\phi(t)$ satisfies the differential equation $\dot{\phi}=\lambda \phi^{s}, \lambda$ is an arbitrary number and $d=\left(d_{1}, \ldots, d_{n}\right)^{T} \neq 0$ is a solution of the following algebraic system:

$$
V_{i}(d)=\lambda d_{i} \quad i=1, \ldots, n .
$$

In this paper we generalize this method.
It was shown in $[8,10]$ that the weighted degree of a polynomial first integral of the system (1.1) is a certain integer linear combination of Kovalevskaya exponents (see [9]). In section 2 we give a new simple proof of this result. In section 3 a similar theorem for polynomial symmetry fields is proven. As an example, we consider the well known Halphen equations. Section 4 contains our main result. We present so-called base functions and prove that every homogeneous polynomial first integral of a fixed degree is a certain linear combination of the corresponding base functions. In section 5 we give an application of previous results to planar homogeneous quadratic systems where necessary and sufficient conditions for the existence of polynomial first integrals in terms of Kovalevskaya exponents are found.

2. The existence of the polynomial first integral. Necessary conditions

Following paper [2], we consider the solution $C=\left(c_{1}, \ldots, c_{n}\right)^{T} \neq(0, \ldots, 0)^{T}$ of algebraic equations

$$
\begin{equation*}
f_{i}\left(c_{1}, \ldots, c_{n}\right)+c_{i}=0 \quad i=1, \ldots, n \tag{2.1}
\end{equation*}
$$

We define the Kovalevskaya matrix K [3]

$$
K_{i j}=\frac{\partial f_{i}}{\partial x_{j}}(C)+\delta_{i j} \quad i, j=1, \ldots, n
$$

where $\delta_{i j}$ is the Kronecker symbol. Let us assume that K can be transformed to diagonal form

$$
K=\operatorname{diag}\left(\rho_{1}, \ldots, \rho_{n}\right)
$$

The eigenvalues $\rho_{1}, \ldots, \rho_{n}$ are called Kovalevskaya exponents.

Lemma 1 [3]. Vector C is an eigenvector of the matrix K with eigenvalue $\rho_{1}=-1$.
Consider the following linear differential operators:

$$
\begin{array}{rlrl}
D_{+} & =\sum_{i=1}^{n} f_{i} \frac{\partial}{\partial x_{i}} & D_{0} & =\sum_{i, j=1}^{n} K_{i j} x_{j} \frac{\partial}{\partial x_{i}} \\
U & =\sum_{i=1}^{n} x_{i} \frac{\partial}{\partial x_{i}} & D_{-}=\sum_{i=1}^{n} c_{i} \frac{\partial}{\partial x_{i}} \tag{2.2}
\end{array}
$$

which satisfy relations

$$
\begin{equation*}
\left[D_{-}, D_{+}\right]=D_{0}-U \quad\left[D_{0}, D_{-}\right]=D_{-} \tag{2.3}
\end{equation*}
$$

where $[A, B]=A B-B A$.

Theorem $2[8,10]$. Suppose that the system (1.1) possesses a homogeneous polynomial first integral F_{M} of degree M, and $\rho_{1}=-1, \rho_{2}, \ldots, \rho_{n}$ are Kovalevskaya exponents. Then there exists a set of non-negative integers k_{2}, \ldots, k_{n} such that

$$
\begin{equation*}
k_{2} \rho_{2}+\cdots+k_{n} \rho_{n}=M \quad k_{2}+\cdots+k_{n} \leqslant M . \tag{2.4}
\end{equation*}
$$

Proof. By definition of a first integral $D_{+} F_{M}=0$. Considering identities

$$
\begin{equation*}
D_{-}^{l}\left(D_{+} F_{M}\right)=0 \quad \text { for } \quad l \in \mathbb{N} \tag{2.5}
\end{equation*}
$$

we obtain the following set of polynomials:

$$
F_{M}, F_{M-1}, \ldots, F_{\rho+1}, F_{\rho}
$$

defined by the recursive relations

$$
D_{-} F_{i+1}=(M-i) F_{i} \quad i=\rho, \ldots, M-1
$$

where the number $1 \leqslant \rho \leqslant M$ is determined by the condition $D_{-} F_{\rho}=0$. Using (2.3) and (2.5) we deduce the following chain of equations:

$$
\begin{align*}
& D_{0} F_{M}=M F_{M}-D_{+} F_{M-1} \\
& D_{0} F_{M-1}=M F_{M-1}-D_{+} F_{M-2} \\
& \ldots \tag{2.6}\\
& D_{0} F_{\rho+1}=M F_{\rho+1}-D_{+} F_{\rho} \\
& D_{0} F_{\rho}=M F_{\rho} .
\end{align*}
$$

Let J_{1}, \ldots, J_{n} be linearly independent eigenvectors of the Kovalevskaya matrix K corresponding to the eigenvalues $\rho_{1}=-1, \rho_{2}, \ldots, \rho_{n}$. According to lemma 1 we can always put $J_{1}=C$.

We now consider the linear change of variables

$$
\begin{equation*}
x_{i}=\sum_{j=1}^{n} L_{i j} y_{j} \quad i=1, \ldots, n \tag{2.7}
\end{equation*}
$$

where $L=\left(L_{i j}\right)$ is a non-singular matrix defined by

$$
L=\left(C, J_{2}, \ldots, J_{n}\right),
$$

then obviously

$$
L^{-1} K L=\operatorname{diag}\left(-1, \rho_{2}, \ldots, \rho_{n}\right)
$$

With the help of (2.7) and lemma 1 one finds the following expressions for the operators D_{0}, D_{-}in the new variables:

$$
D_{0}=\sum_{i=1}^{n} \rho_{i} y_{i} \frac{\partial}{\partial y_{i}} \quad D_{-}=-\frac{\partial}{\partial y_{1}}
$$

and equation (2.6) becomes

$$
\begin{equation*}
\left(\rho_{2} y_{2} \frac{\partial}{\partial y_{2}}+\cdots+\rho_{n} y_{n} \frac{\partial}{\partial y_{n}}\right) F_{\rho}=M F_{\rho} . \tag{2.8}
\end{equation*}
$$

We can write the polynomial F_{ρ} as follows:

$$
\begin{equation*}
F_{\rho}=\sum_{|k|=\rho} A_{k_{2}, \ldots, k_{n}} y_{2}^{k_{2}}, \ldots, y_{n}^{k_{n}} \quad|k|=k_{2}+\cdots+k_{n} \quad k_{i} \in \mathbb{Z}_{+} \tag{2.9}
\end{equation*}
$$

Substituting (2.9) into (2.8), one obtains the following linear system:

$$
\begin{equation*}
\left(k_{2} \rho_{2}+\cdots+k_{n} \rho_{n}\right) A_{k_{2}, \ldots, k_{n}}=M A_{k_{2}, \ldots, k_{n}} \quad \text { for } \quad|k|=\rho \tag{2.10}
\end{equation*}
$$

Taking into account that F_{ρ} is not zero identically, we conclude that there exists at least one non-zero set $k_{2}, \ldots, k_{n},|k| \leqslant M$ such that

$$
\begin{equation*}
k_{2} \rho_{2}+\cdots+k_{n} \rho_{n}=M . \tag{2.11}
\end{equation*}
$$

This relation implies (2.4).
Remark. Theorem 2 does not impose any restrictions on $\operatorname{grad}\left(F_{M}\right)$ calculated at the point C. Thus, it generalizes the theorem of Yoshida [3, p 572], who used essentially the condition $\operatorname{grad}\left(F_{M}\right) \neq 0$.

Corollary 1. The Halphen equations

$$
\begin{align*}
& \dot{x}_{1}=x_{3} x_{2}-x_{1} x_{3}-x_{1} x_{2} \\
& \dot{x}_{2}=x_{1} x_{3}-x_{2} x_{1}-x_{2} x_{3} \tag{2.12}\\
& \dot{x}_{3}=x_{2} x_{1}-x_{3} x_{2}-x_{3} x_{1}
\end{align*}
$$

admit no polynomial first integrals.
Indeed, the system (2.12) has Kovalevskaya exponents $\rho_{1}=\rho_{2}=\rho_{3}=-1$. It is easy to verify that conditions (2.4) are not fulfilled for any positive integer M. Moreover, as proved in [2], the system (2.12) has no rational first integrals.

3. Existence of polynomial symmetry fields. Necessary conditions

The first integrals are the simplest tensor invariants of the system (1.1). In [4] Kozlov considered tensor invariants of weight-homogeneous differential equations which include the system (1.1). In particular, he found necessary conditions for the existence of symmetry fields. Below we propose a generalization of his result.

Recall that the linear operator $W=\sum_{i=1}^{n} w_{i}\left(x_{1}, \ldots, x_{n}\right) \frac{\partial}{\partial x_{i}}$, is called the symmetry field of (1.1), if $\left[W, D_{+}\right]=0$, where D_{+}is defined by (2.2). If w_{1}, \ldots, w_{n} are homogeneous functions of degree $M+1$ then the degree of W is M [4].

Theorem 2. Suppose that the system (1.1) possesses a polynomial symmetry field of degree M and $\rho_{1}=-1, \rho_{2}, \ldots, \rho_{n}$ are Kovalevskaya exponents. Then there exist non-negative integers $k_{2}, \ldots, k_{n},|k| \leqslant M+1$ such that at least one of the following equalities holds:

$$
\begin{equation*}
k_{2} \rho_{2}+\cdots+k_{n} \rho_{n}=M+\rho_{i} \quad i=1, \ldots, n \tag{3.1}
\end{equation*}
$$

Proof. Let W_{M} be a polynomial symmetry field of degree M. Substituting in the proof of theorem 2 operators D_{+}, D_{0}, D_{-}with their commutators [D_{+},], $\left[D_{0},\right],\left[D_{-}\right.$,] respectively we repeat the same arguments.

Corollary 3. The Halphen equations (2.12) admit no polynomial symmetry fields.
Using (3.1) we obtain that M may be equal to $-1,0,1$ only. It is easy to check that (2.12) does not have symmetry fields of such degrees.

4. Base functions

After the change of variables (2.7) the system (1.1) takes the form

$$
\begin{align*}
& \dot{y}_{1}=-y_{1}^{2}+\varphi_{1}\left(y_{2}, \ldots, y_{n}\right) \tag{4.1}\\
& \dot{y}_{i}=\left(\rho_{i}-1\right) y_{1} y_{i}+\varphi_{i}\left(y_{2}, \ldots, y_{n}\right) \quad i=2, \ldots, n
\end{align*}
$$

where φ_{i} are quadratic homogeneous polynomials in the variables y_{2}, \ldots, y_{n}.
According to (2.2) we now define operators D_{+}, D_{0}, D_{-}.

A homogeneous polynomial $P_{M}\left(y_{1}, \ldots, y_{n}\right)$ of degree M satisfying the condition

$$
\begin{equation*}
D_{-}\left(D_{+} P_{M}\right)=0 \tag{4.2}
\end{equation*}
$$

is called the base function of the system (4.1). In other words, the function $D_{+} P_{M}$ does not depend on y_{1}. It is clear that base functions of degree M form a linear space L_{M} over field \mathbb{C}.

Lemma 4. If the system (4.1) has a homogeneous polynomial first integral F_{M} of degree M, then $F_{M} \in L_{M}$.

Indeed, by definition, we have $D_{+} F_{M}=0$, hence, in view of (4.2), $F_{M} \in L_{M}$.
Let $J(M)=\left\{z \in \mathbb{Z}_{+}^{n-1}\left|z_{2} \rho_{2}+\cdots+z_{n} \rho_{n}=M,|z| \leqslant M\right\}\right.$ be the set of integer-valued vectors $z=\left(z_{2}, \ldots, z_{n}\right)^{T}$ for which the condition (2.11) is fulfilled. We put $m=|J(M)|$ and suppose $J(M) \neq \emptyset$.

Theorem 5. The dimension d of L_{M} satisfies the condition $1 \leqslant d \leqslant m$.

Proof. Let us assume the set $J(M)$ contains vectors $z^{(1)}, \ldots, z^{(m)}$ which are ordered by the norm $|z|=z_{2}+\cdots+z_{n}$

$$
\left|z^{(1)}\right| \leqslant \cdots \leqslant\left|z^{(m)}\right|
$$

We define the vector $\rho=\left(\rho_{2}, \ldots, \rho_{n}\right)^{T}$ and put $(\rho, z)=\rho_{2} z_{2}+\cdots+\rho_{n} z_{n},\left|z^{(i)}\right|=n_{i}$, $i=1, \ldots, m$.

Following the proof of theorem 2, for each $i=1, \ldots, m$ we consider the system of linear partial differential equations

$$
\begin{align*}
& D_{0} P_{i, n_{i}}=M P_{i, n_{i}} \\
& D_{0} P_{i, n_{i}+1}=M P_{i, n_{i}+1}-D_{+} P_{i, n_{i}} \\
& \ldots \tag{4.3}\\
& D_{0} P_{i, M-1}=M P_{i, M-1}-D_{+} P_{i, M-2} \\
& D_{0} P_{i, M}=M P_{i, M}-D_{+} P_{i, M-1} \\
& D_{-} P_{i, l+1}=(M-l) P_{i, l} \quad l=n_{i}, \ldots, M-1 \tag{4.4}
\end{align*}
$$

which defines polynomials $P_{i, n_{i}}, \ldots, P_{i, M}$ recurrently.
It follows from $\left(z^{(i)}, \rho\right)=M$ that the first equation in (4.3) has the particular solution $P_{i, n_{i}}=y_{2}^{z_{2}^{(i)}}, \ldots, y_{n}^{z_{n}^{(i)}}$.

Equations (4.3), (4.4) define a certain base function $P_{i, M}$. Indeed, according to (4.4), we have

$$
\begin{equation*}
P_{i, M-1}=D_{-} P_{i, M} \tag{4.5}
\end{equation*}
$$

Substituting (4.5) into the last equation in (4.3), and using relations (2.3) we find

$$
D_{0} P_{i, M}=M P_{i, M}-D_{+} D_{-} P_{i, M}=M P_{i, M}-\left(D_{-} D_{+}-D_{0}+U\right) P_{i, M}
$$

Hence $D_{-}\left(D_{+} P_{i, M}\right)=0$.
Now consider the problem on the existence of a solution of (4.3), (4.4) in the form of homogeneous polynomials $P_{i, n_{i}}, \ldots, P_{i, M}$. We fix certain $i=1, \ldots, m$ and put $a_{i}=M-n_{i}$. Using the relations (4.4) we can write

$$
\begin{align*}
& P_{i, n_{i}}=I_{i, n_{i}} \\
& P_{i, n_{i}+p}=\sum_{j=0}^{p}\binom{p-j}{a_{i}-j} y_{1}^{p-j} I_{i, n_{i}+j} \quad p=1, \ldots, a_{i} \tag{4.6}
\end{align*}
$$

where $I_{i, k}\left(y_{2}, \ldots, y_{n}\right)$ are certain homogeneous polynomials of degrees $k=n_{i}, \ldots, M$. Notice that $I_{i, k}$ does not depend on y_{1}.

Differential operators D_{+}, D_{0} can be represented in the form

$$
\begin{align*}
D_{+} & =\left(-y_{1}^{2}+\varphi_{1}\right) \frac{\partial}{\partial y_{1}}+y_{1}\left(A_{0}-\tilde{U}\right)+A_{+} \tag{4.7}\\
D_{0} & =-y_{1} \frac{\partial}{\partial y_{1}}+A_{0}
\end{align*}
$$

where

$$
\begin{equation*}
A_{+}=\sum_{k=2}^{n} \varphi_{k} \frac{\partial}{\partial y_{k}} \quad A_{0}=\sum_{k=2}^{n} \rho_{k} y_{k} \frac{\partial}{\partial y_{k}} \quad \tilde{U}=\sum_{k=2}^{n} y_{k} \frac{\partial}{\partial y_{k}} . \tag{4.8}
\end{equation*}
$$

Using (4.3), (4.6), (4.7) one deduces the following equations for determination of I :

$$
\begin{align*}
& A_{0} I_{i, n_{i}}=M I_{i, n_{i}} \\
& A_{0} I_{i, n_{i}+1}=M I_{i, n_{i}+1}-A_{+} I_{i, n_{i}} \\
& A_{0} I_{i, n_{i}+2}=M I_{i, n_{i}+2}-a_{i} \varphi_{1} I_{i, n_{i}}-A_{+} I_{i, n_{i}+1} \\
& A_{0} I_{i, n_{i}+3}=M I_{i, n_{i}+3}-\left(a_{i}-1\right) \varphi_{1} I_{i, n_{i}+1}-A_{+} I_{i, n_{i}+2} \tag{4.9}\\
& \ldots \\
& A_{0} I_{i, M}=M I_{i, M}-2 \varphi_{1} I_{i, M-2}-A_{+} I_{i, M-1} .
\end{align*}
$$

We can write each equation of (4.9) as follows:

$$
\begin{equation*}
A_{0} X_{l}=M X_{l}+Y_{l} \tag{4.10}
\end{equation*}
$$

where X_{l}, Y_{l} are homogeneous polynomials of weighted degree $l=n_{i}, \ldots, M$. Let us assume
$X_{l}=\sum_{|i|=l} c_{i_{2}, \ldots, i_{n}} y_{2}^{i_{2}}, \ldots, y_{n}^{i_{n}} \quad Y_{l}=\sum_{|i|=l} d_{i_{2}, \ldots, i_{n}} y_{2}^{i_{2}}, \ldots, y_{n}^{i_{n}} \quad|i|=i_{2}+\cdots+i_{n}$
where $c_{i_{2}, \ldots, i_{n}}, d_{i_{2}, \ldots, i_{n}}$ are constant parameters. Then substituting (4.11) into (4.10), we obtain the following linear system with respect to $c_{i_{2}, \ldots, i_{n}}$:

$$
\begin{equation*}
\left(i_{2} \rho_{2}+\cdots+i_{n} \rho_{n}-M\right) c_{i_{2}, \ldots, i_{n}}=d_{i_{2}, \ldots, i_{n}} \tag{4.12}
\end{equation*}
$$

for $i_{2}, \ldots, i_{n}=0,1, \ldots,|i|=l$.
Suppose there exists a set k_{2}, \ldots, k_{n} for which the following conditions are fulfilled:

$$
\begin{equation*}
\left(k_{2}, \ldots, k_{n}\right)^{T} \in J(M) \quad d_{k_{2}, \ldots, k_{n}} \neq 0 \quad|k|=l \tag{4.13}
\end{equation*}
$$

Then the solution $I_{i, n_{i}}, \ldots, I_{i, M}$ does not exist. In this case we put $P_{i, M}=0$.
If the conditions (4.13) are not satisfied, we obtain the base function

$$
\begin{equation*}
P_{i, M}=\sum_{j=0}^{a_{i}} y_{1}^{a_{j}-j} I_{i, n_{i}+j} \tag{4.14}
\end{equation*}
$$

It is easy to show that polynomials $\left\{P_{i, M}\right\}_{i=m}^{i=1}$ are linearly independent over the field \mathbb{C}.
Taking into account that $n_{1} \leqslant \cdots \leqslant n_{m}$ and using (4.13), we see that in the case $i=m$ we always can determine the base function $P_{i, M}$. Therefore, under the assumption $J(M) \neq \emptyset$, the space L_{M} always contains a non-zero function.

Corollary 6. If at least one resonance condition of the form

$$
(z, \rho)=M \quad|z| \leqslant M \quad z \in \mathbb{Z}_{+}^{n-1}
$$

is fulfilled, then there exists a base function of degree M.

5. Polynomial first integrals in the case of a quadratic plane vector field

The first classification of integral curves of two-dimensional quadratic homogeneous systems can be found in the paper by Lyagina [5] and later was completed by numerous authors.

In this section we apply the previous results to this problem to illustrate the method of basis functions.

Consider the system

$$
\begin{align*}
& \dot{x}_{1}=a_{1} x_{1}^{2}+b_{1} x_{1} x_{2}+d_{2} x_{2}^{2} \\
& \dot{x}_{2}=a_{2} x_{2}^{2}+b_{2} x_{1} x_{2}+d_{1} x_{1}^{2} \tag{5.1}
\end{align*}
$$

where a_{i}, b_{i}, d_{i} are constant parameters.
Let $c^{(1)}=\left(c_{1}^{(1)}, c_{2}^{(1)}\right)^{T}, c^{(2)}=\left(c_{1}^{(2)}, c_{2}^{(2)}\right)^{T}$ be any two linearly independent solutions of the algebraic system (2.1). The exceptional cases when the system (2.1) has only one or admit no solutions are excluded for the discussion below.

We assume that Kovalevskaya exponents corresponding to $c^{(1)}, c^{(2)}$ are

$$
\begin{equation*}
R_{1}=\left(-1, \rho_{1}\right)^{T} \quad R_{2}=\left(-1, \rho_{2}\right)^{T} . \tag{5.2}
\end{equation*}
$$

Lemma 7. The system (5.1) has a homogeneous polynomial first integral of degree M if and only if there exists an integer $k=1, \ldots, M-1$ such that $\rho_{1}=M / k$ and ρ_{2} is one of the following numbers:

$$
\frac{M}{M-k}, \frac{M}{M-k-1}, \ldots, \frac{M}{2}, M .
$$

Proof. Consider the following change of coordinates:

$$
\binom{x_{1}}{x_{2}}=\left(\begin{array}{ll}
c_{1}^{(1)} & c_{1}^{(2)} \tag{5.3}\\
c_{2}^{(1)} & c_{2}^{(2)}
\end{array}\right)\binom{p_{1}}{p_{2}}
$$

which exists because of linear independence of vectors $c^{(1)}, c^{(2)}$. In coordinates $\left(p_{1}, p_{2}\right)$ the system (5.1) takes a more simple form

$$
\begin{align*}
& \dot{p}_{1}=-p_{1}^{2}+\left(\rho_{2}-1\right) p_{1} p_{2} \tag{5.4}\\
& \dot{p}_{2}=-p_{2}^{2}+\left(\rho_{1}-1\right) p_{1} p_{2} .
\end{align*}
$$

It is easy to show that under the change (5.3), the vectors $c^{(1)}, c^{(2)}$ turn into $\tilde{c}^{(1)}=(1,0)^{T}$, $\tilde{c}^{(2)}=(0,1)^{T}$ respectively. Obviously, the system (5.4) has the same Kovalevskaya exponents (5.2). The matrix K, calculated for $\tilde{c}^{(1)}$, is

$$
K=\left(\begin{array}{cc}
-1 & \rho_{2}-1 \\
0 & \rho_{1}
\end{array}\right)
$$

Under the assumption $\rho_{1} \neq-1$, we can reduce K to a diagonal form using the following change of coordinates:

$$
\binom{p_{1}}{p_{2}}=L\binom{y_{1}}{y_{2}}
$$

with the constant matrix L

$$
L=\left(\begin{array}{ll}
1 & \rho_{2}-1 \\
0 & \rho_{1}-1
\end{array}\right)
$$

The case $\rho_{1}=-1$ will be considered below.
Finally, equations (5.4) take the form (4.1)

$$
\begin{align*}
& \dot{y}_{1}=-y_{1}^{2}+\varphi_{1} \tag{5.5}\\
& \dot{y}_{2}=\left(\rho_{1}-1\right) y_{1} y_{2}+\varphi_{2}
\end{align*}
$$

where

$$
\begin{array}{ll}
\varphi_{1}=a y_{2}^{2} & \varphi_{2}=b y_{2}^{2} \\
a=\left(\rho_{2}-1\right)\left(\rho_{1}+\rho_{2}\right) & b=\left(\rho_{1}-1\right)\left(\rho_{2}-1\right)-\rho_{1}-1 .
\end{array}
$$

For the operators (4.8) we get

$$
A_{+}=\varphi_{2} \frac{\partial}{\partial y_{2}} \quad A_{0}=\rho_{1} y_{2} \frac{\partial}{\partial y_{2}} \quad \tilde{U}=y_{2} \frac{\partial}{\partial y_{2}}
$$

Let F_{M} be a polynomial first integral of (5.5) of degree M.
According to theorem 2, there exists an integer $k=1, \ldots, M-1$ such that

$$
\begin{equation*}
k \rho_{1}=M \tag{5.6}
\end{equation*}
$$

We exclude the case $k=M\left(\rho_{1}=1\right)$, since if $\rho_{1}= \pm 1$, then the system (5.1) has no polynomial first integrals. This can be shown directly using equations (5.4) and (5.5).

Next, we calculate the base function P_{M} corresponding to the resonance condition (5.6). Consider the equations (4.9). It is obvious that polynomials $I_{1, k}, \ldots, I_{1, M}$ can be represented in the following form:

$$
\begin{equation*}
I_{1, k+i}=\alpha_{i} y_{2}^{k+i} \quad i=0, \ldots, M-k \tag{5.7}
\end{equation*}
$$

where $\alpha_{0}, \ldots, \alpha_{M-k}$ are constant parameters.
Substituting (5.7) into (4.9) we obtain

$$
\begin{align*}
\alpha_{0} & =1 \\
\alpha_{1} & =\frac{b k}{\rho_{1}(k+1)-M} \tag{5.8}\\
\alpha_{i} & =\frac{a(M-k-i+2) \alpha_{i-1}+b(k+i-1) \alpha_{i-2}}{\rho_{1}(k+i)-M} \quad i=2, \ldots, M-k .
\end{align*}
$$

According to (4.14), we get the following expression for the base function P_{M} :

$$
\begin{equation*}
P_{M}=\sum_{j=0}^{M-k} \alpha_{j} y_{1}^{M-k-j} y_{2}^{k+j} \tag{5.9}
\end{equation*}
$$

By definition of the base function it is clear that

$$
\begin{equation*}
D_{+} P_{M}=\delta y_{2}^{M+1} \tag{5.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta=a \alpha_{M-1}+b M \alpha_{M} . \tag{5.11}
\end{equation*}
$$

Thus, the linear space L_{M} contains only one polynomial P_{M}. Hence, taking into account lemma 6, $F_{M}=\operatorname{const} P_{M}$.

Using (5.10), we conclude that P_{M} is a first integral if and only if $\delta=0$. In view of (5.6), (5.8), (5.11) and the above condition, we arrive at lemma 9.

Theorem 8. The system (5.1) possesses a homogeneous polynomial first integral of degree M if and only if the following conditions are fulfilled:
(a) $\rho_{i}, i=1,2$ are positive rational numbers;
(b) $\rho_{1}^{-1}+\rho_{2}^{-1} \leqslant 1$;
(c) $\frac{M}{\rho_{i}} \in \mathbb{N}$.

This is an obvious consequence of lemma 9.
As an example consider the following system:

$$
\begin{align*}
& \dot{x}_{1}=x_{1}^{2}-9 x_{2}^{2} \tag{5.12}\\
& \dot{x}_{2}=-3 x_{1}^{2}-8 x_{1} x_{2}+3 x_{2}^{2}
\end{align*}
$$

The vectors $c^{(1)}, c^{(2)}$ have the form

$$
c^{(1)}=\left(\frac{1}{8},-\frac{1}{8}\right)^{T} \quad c^{(2)}=\left(\frac{1}{8}, \frac{1}{8}\right)^{T} .
$$

Calculating the corresponding Kovalevskaya exponents (5.2) one obtains

$$
R_{1}=(-1,3)^{T} \quad R_{2}=\left(-1, \frac{3}{2}\right)^{T}
$$

We have $\rho_{1}=3, \rho_{2}=\frac{3}{2}, \rho_{1}^{-1}+\rho_{2}^{-1}=1$. So, the conditions (a) and (b) of theorem 10 are fulfilled. By the condition (c) one gets $M=3 l, l \in \mathbb{N}$. Thus, equations (5.12) possess a cubic first integral F_{3}. Using formulae (5.8) and (5.9), we obtain

$$
F_{3}=x_{1}^{3}+x_{1}^{2} x_{2}-x_{1} x_{2}^{2}-x_{2}^{3}
$$

Acknowledgments

The author is grateful to J-M Strelcyn for his useful remarks, V Kozlov, D Treshev, H Yoshida, K Emelyanov, Yu Fedorov and L Gavrilov for their interest in the paper.

References

[1] Darboux G 1878 Mémoire sur les équations différentielles algébrique du premier ordre et du premier degré Bull. Sci. Math. Ser 22 60-96, 123-144, 151-200
[2] Maciejewski A J and Strelcyn J-M 1995 On algebraic non-integrability of the Halphen system Phys. Lett. A 201 161-6
[3] Yoshida H 1983 Necessary condition for existence of algebraic first integrals Celestial Mech. 31 363-99
[4] Kozlov V V 1992 Tensor invariants of quasihomogeneous systems of differential equations and the asymptotic method of Kovallevskaya-Lyapunov Mat. Zametki 51 46-52 (Engl. Transl. 1992 Math. Notes 51)
[5] Lyagina L 1951 The invariant curves of equation $\mathrm{d} y / \mathrm{d} x=\left(a x^{2}+b x y+c y^{2}\right) /\left(d x^{2}+e x y+f y^{2}\right)$ Usp. Mat. Nauk 6 171-83 (in Russian)
[6] Jouanolou J-P 1979 Equations de Pfaff algébriques Lecture Notes in Mathematics vol 708 (Berlin: Springer)
[7] Ollagnier J, Nowicki A and Strelcyn J-M 1995 On the non-existence of constants of derivations: the proof of theorem of Jouanolou and its development Bull. Sci. Math. 119 195-233
[8] Goriely A 1996 Integrability, partial integrability and nonintegrability for systems of ordinary differential equations J. Math. Phys. 37 1871-93
[9] Goriely A 2000 A brief history of Kovalevskaya exponents and modern developments Regular and Chaotic Dynamics 5 3-15
[10] Furta S D 1996 On non-integrability of general systems of differential equations Z. Angew. (Math.) Phys. 47 112-31

